Square Root 1 to 100

Square Root 1 to 100

On this page, you will find Square Root 1 to 100, by reading which you will be able to solve math problems easily.

On the previous page, we had shared the information of Squares From 1 to 100, so read that article as well, let us read and understand the information of Square Root 1 to 100 today.

Square Root 1 to 100

Number (N)Square (N²)Square root (√N)
111
241.414
391.732
4162
5252.236
6362.449
7492.646
8642.828
9813
101003.162
111213.317
121443.464
131693.606
141963.742
152253.873
162564
172894.123
183244.243
193614.359
204004.472
214414.583
224844.69
235294.796
245764.899
256255
266765.099
277295.196
287845.292
298415.385
309005.477
319615.568
3210245.657
3310895.745
3411565.831
3512255.916
3612966
3713696.083
3814446.164
3915216.245
4016006.325
4116816.403
4217646.481
4318496.557
4419366.633
4520256.708
4621166.782
4722096.856
4823046.928
4924017
5025007.071
5126017.141
5227047.211
5328097.28
5429167.348
5530257.416
5631367.483
5732497.55
5833647.616
5934817.681
6036007.746
6137217.81
6238447.874
6339697.937
6440968
6542258.062
6643568.124
6744898.185
6846248.246
6947618.307
7049008.367
7150418.426
7251848.485
7353298.544
7454768.602
7556258.66
7657768.718
7759298.775
7860848.832
7962418.888
8064008.944
8165619
8267249.055
8368899.11
8470569.165
8572259.22
8673969.274
8775699.327
8877449.381
8979219.434
9081009.487
9182819.539
9284649.592
9386499.644
9488369.695
9590259.747
9692169.798
9794099.849
9896049.899
9998019.95
1001000010

Value of Square Roots from 1 to 100

Square Roots from 1 to 100

Square Roots from 1 to 10

√11
√21.414
√31.732
√42
√52.236
√62.449
√72.646
√82.828
√93
√103.162

Square Roots from 11 to 20

√113.317
√123.464
√133.606
√143.742
√153.873
√164
√174.123
√184.243
√194.369
√204.472

Square Roots from 21 to 30

√214.683
√224.69
√234.796
√244.899
√25
√265.099
√275.196
√285.292
√295.386
√305.477

Square Roots from 31 to 40

√316.668
√326.667
√336.746
√346.831
√356.916
√366
√376.083
√386.164
√396.246
√406.326

Square Roots from 41 to 50

√416.403
√426.481
√436.667
√446.633
√456.708
√466.782
√476.866
√486.928
√497
√507.071

Square Roots from 51 to 60

√517.141
√527.211
√537.28
√547.348
√557.416
√567.483
√577.66
√587.616
√597.681
√607.746

Square Roots from 61 to 70

√617.81
√627.874
√637.937
√648
√658.062
√668.124
√678.186
√688.246
√698.307
√708.367

Square Roots from 71 to 80

√718.426
√728.486
√738.644
√748.602
√758.66
√768.718
√778.776
√788.832
√798.888
√808.944

Square Roots from 81 to 90

√819
√829.066
√839.11
√849.166
√859.22
√869.274
√879.327
√889.381
√899.434
√909.487

Square Roots from 91 to 100

√919.639
√929.692
√939.644
√949.696
√959.747
√969.798
√979.849
√989.899
√999.96
√10010

Examples

Example 1. Find the value of x, if x√100 = 2000.

Solution : Given that, x√100 = 2000
As we know, the square root of 100 is 10.
I.e., √100 = 10
Hence, x(10) = 2000
10x = 2000
x = 2000/10 
x = 200
Therefore, the value of x is 200.

Example 2. Determine the value of x, if x = 2√49

Solution : Given : x = 2√49
We know that, √49 = 7
Hence, x = 2(7)
= 14 Ans.

Example 3. If a circular tabletop has a radius of 70 inches. Find the area of the tabletop in sq. inches? [Use π = 3.14]

Solution : Area of circular tabletop = πr2 
= π (70)2
Using values from square 1 to 100 chart;
i.e. A = 4900π
= 4900 x 3.14
= 15386
Therefore, the area of the tabletop = 15386 inches2.

Example 4. Find the area of a square window whose side length is 34 inches.

Solution : Area of square window (A) = Side2
i.e. A = 342
= 1156
Therefore, the area of a square window is 1156 inches2.

Example 5. Two square wooden planks have sides 30m and 42m respectively. Find the combined area of both the wooden planks?

Solution : Area of wooden plank = (side)2
⇒ Area of 1st wooden plank = 302
= 900 m2
⇒ Area of 2nd wooden plank = 422
= 1764 m2
Therefore, the combined area of wooden planks is 900 + 1764 = 2664 m2

Read More :
DiscountProFit and LossSimple Interest
SimpliFicationLCM and HCFCompound Interest

In this post you read the Square Root 1 to 100.

I hope you have liked this post.

If you liked the post of the class, then do share it on social media.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top